SMARTLAB

PCI BUS 16 CHANNELS RELAY
OUTPUT

16 CHANNELS PHOTO ISOLATOR INPUT ADAPTER

OPERATION MANUAL

DECISION

Computer International Co., Ltd.

TABLE OF CONTENTS

CHAPTERS

1. Introduction	1
2. Hardware Configuration	4
APPENDICES	
A. Warranty Information	11
B. Data Sheet	14

CHAPTER 1

INTRODUCTION

The PCI 16 channels relay output / photo isolator input adapter is a 32 bits PCI bus board with Plug and Play (PnP) features, it is a programmable I/O interface card for PC/486, Pentium, or compatibles. The PnP features let hardware configuration for IRQ and I/O address is detected by BIOS automatically, you don't need set switch and jumper.

The PCI 16 channels relay output / photo isolator input adapter provides relay output functions. The relay output part provides 16 relays to drive 16 different output channels. Each relay channel can be used to control ON/ OFF of external devices, to drive external power relays, to activate alarms... etc.

The photo isolator input part provides 16 photo couple digital input channels, which allow the input signals to be completely floated and prevent the ground loop.

The features of PCI 16 channels relay output / 16 channels photo isolator input adapter are:

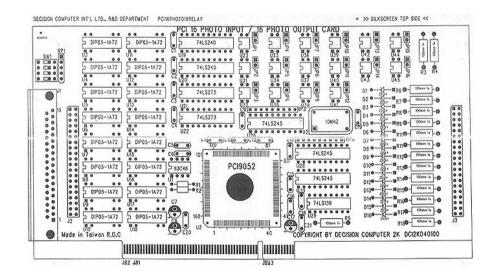
- 32 bits PCI bus with Plug and Play (PnP) features.
- Support 16 relay output channels and 16 photo couple input channels.
- Max contact rating for relay: 70V/AC, 100V/DC 0.25AMP.
- Response time for relay: 1 ms minimum.
- Contact resistance for relay: 0.2 OHM maximum.
- Support several operating modes that are programmable.

• Activation voltage:

When short jumpers (input range from 0 to 20V)

0 to 1.5V inactive

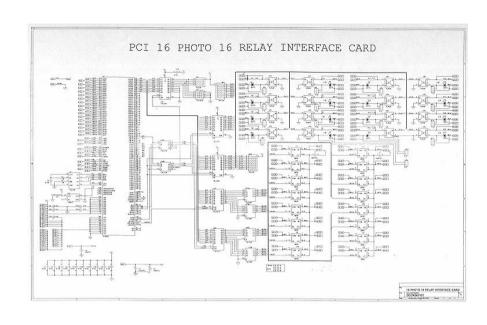
3 to 20V active


When open jumpers (input range from 0 to 30V)

0 to 16.6V inactive

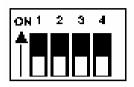
18 to 30V active

PACKAGE CONTENTS:


- SMARTLAB PCI bus 16 channels relay output / 16 channels photo couple input adapter.
- User's manual.
- Warranty form.

CHAPTER 2

HARDWARE CONFIGURATION


Before you use the PCI 16 channels relay output / 16 channels photo couple input adapter, Please check our technical web site http://www.smatlab.com. Observe the figure in the follows, the proper settings for the PCI 16 channels relay output / 16 channels photo couple input adapter is described in the following.

3

2.1 Switch and Jumper Settings

1. Card ID setting

Card No 1: All OFF

Card No 2: 1 ON, 2, 3, 4 OFF Card No 3: 2 ON, 1, 3, 4 OFF Card No 4: 3 ON, 1, 2, 4 OFF

The switch is used to identify card number. Please set card number by card identifier switch, the PCI BIOS will assign preallocated I/O address to each adapter. Please set different card number to each adapter (do not duplicate card number setting).

2. JP1 to JP16

Jumper	Input Range	Inactive Voltage	Active Voltage
Open	0 to 30V	0 to 1.5V	3 to 20V
Short	0 to 20V	0 to 16.5V	18 to 30V

The JP1 is used to select voltage signal opto+ and opto- range of photo couple input channel 1, and the JP2 is used to select voltage signal range of photo input channel 2, ...etc. When we short the jumper, the input voltage range is 0 to 20V, and open the jumper means input voltage range is 0 to 30V.

2.2 I/O Address

Operations Manual

The PnP feature will get base I/O address automatically, where

Base Address + 0: Relay output channel 1 to 16

						9	
RL16	RL15	RL14	RL13	RL12	RL11	RL10	RL9
•	-	-	-	-	_	1	-
RL8	RL7	RL6	RL5	RL4	RL3	RL2	RL1

Base Address + 0: Photo isolator input channel 1 to 16.

					10		
IN16	IN15	IN14	IN13	IN12	IN11	IN10	IN9
7	6	5	4	3	2	1	0
IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1

2.3 Connector Assignments

1. DB 37 Connector Pin Assignments

Pin	Single	Description
1	NO01	Relay channel 1, Normal open output
2	NO02	Relay channel 2, Normal open output
3	NO03	Relay channel 3 Normal open output
4	NO04	Relay channel 4 Normal open output
5	NO05	Relay channel 5 Normal open output
6	NO06	Relay channel 6 Normal open output
7	NO07	Relay channel 7 Normal open output
8	NO08	Relay channel 8 Normal open output
9	NO09	Relay channel 9 Normal open output
10	NO10	Relay channel 10 Normal open output
11	NO11	Relay channel 11 Normal open output
12	NO12	Relay channel 12 Normal open output
13	NO13	Relay channel 13 Normal open output
14	NO14	Relay channel 14 Normal open output
15	NO15	Relay channel 15 Normal open output
16	NO16	Relay channel 16 Normal open output
17	GND	GND
18	DC + 5V	DC + 5V output
19	DC +12V	DC +12V output
20	COM01	Relay channel 1, COMMON output
21	COM02	Relay channel 2, COMMON output
22	COM03	Relay channel 3, COMMON output
23	COM04	Relay channel 4, COMMON output
24	COM05	Relay channel 5, COMMON output
25	COM06	Relay channel 6, COMMON output
26	COM07	Relay channel 7, COMMON output
27	COM08	Relay channel 8, COMMON output
28	COM09	Relay channel 9, COMMON output
29	COM10	Relay channel 10 COMMON output
30	COM11	Relay channel 11 COMMON output

31	COM12	Relay channel 12 COMMON output
32	COM13	Relay channel 13 COMMON output
33	COM14	Relay channel 14 COMMON output
34	COM15	Relay channel 15 COMMON output
35	COM16	Relay channel 16 COMMON output
36	GND	GND
37	DC + 5V	DC + 5V output

2. 40 Pins Connector J2

Pin	Single	Description
1	NO-01	Relay Ch. 01 - Output
2	COM-01	Relay Ch. 01 - Output
3	NO-02	Relay Ch. 02 - Output
4	COM-02	Relay Ch. 02 - Output
5	NO-03	Relay Ch. 03 - Output
6	COM-03	Relay Ch. 03 - Output
7	NO-04	Relay Ch. 04 - Output
8	COM-04	Relay Ch. 04 - Output
9	NO-05	Relay Ch. 05 - Output
10	COM-05	Relay Ch. 05 - Output
11	NO-06	Relay Ch. 06 - Output
12	COM-06	Relay Ch. 06 - Output
13	NO-07	Relay Ch. 07 - Output
14	COM-07	Relay Ch. 07 - Output
15	NO-08	Relay Ch. 08 - Output
16	COM-08	Relay Ch. 08 - Output
17	NO-09	Relay Ch. 09 - Output
18	COM-09	Relay Ch. 09 - Output
19	NO-10	Relay Ch. 10 - Output
20	COM-10	Relay Ch. 10 - Output
21	NO-11	Relay Ch. 11 - Output
22	COM-11	Relay Ch. 11 - Output
23	NO-12	Relay Ch. 12 - Output
24	COM-12	Relay Ch. 12 - Output

25	NO-13	Relay Ch. 13 - Output
26	COM-13	Relay Ch. 13 - Output
27	NO-14	Relay Ch. 14 - Output
28	COM-14	Relay Ch. 14 - Output
29	NO-15	Relay Ch. 15 - Output
30	COM-15	Relay Ch. 15 - Output
31	NO-16	Relay Ch. 16 - Output
32	COM-16	Relay Ch. 16 - Output
33	GND	
34	GND	
35	DC + 5V	DC + 5V output
36	DC + 5V	DC + 5V output
37	DC + 12V	DC + 12V output
38	DC + 12V	DC + 12V output
39	GND	_
40	GND	

3. 40 Pins Connector J3

Pin	Single	Description
1	IN-01-	Opto-isolator Ch. 01 - Input
2	IN-01+	Opto-isolator Ch. 01 + Input
3	IN-02-	Opto-isolator Ch. 02 - Input
4	IN02+	Opto-isolator Ch. 02 + Input
5	IN-03-	Opto-isolator Ch. 03 - Input
6	IN-03+	Opto-isolator Ch. 03 + Input
7	IN-04-	Opto-isolator Ch. 04 - Input
8	IN-04+	Opto-isolator Ch. 04 + Input
9	IN-05-	Opto-isolator Ch. 05 - Input
10	IN-05+	Opto-isolator Ch. 05 + Input
11	IN-06-	Opto-isolator Ch. 06 - Input
12	IN-06+	Opto-isolator Ch. 06 + Input
13	IN-07-	Opto-isolator Ch. 07 - Input
14	IN-07+	Opto-isolator Ch. 07 + Input
15	IN-08-	Opto-isolator Ch. 08 - Input

16	IN-08+	Opto-isolator Ch. 08 + Input
17	IN-09-	Opto-isolator Ch. 09 - Input
18	IN-09+	Opto-isolator Ch. 09 + Input
19	IN-10-	Opto-isolator Ch. 10 - Input
20	IN-10+	Opto-isolator Ch. 10 + Input
21	IN-11-	Opto-isolator Ch. 11 - Input
22	IN-11+	Opto-isolator Ch. 11 + Input
23	IN-12-	Opto-isolator Ch. 12 - Input
24	IN-12+	Opto-isolator Ch. 12 + Input
25	IN-13-	Opto-isolator Ch. 13 - Input
26	IN-13+	Opto-isolator Ch. 13 + Input
27	IN-14-	Opto-isolator Ch. 14 - Input
28	IN-14+	Opto-isolator Ch. 14+ Input
29	IN-15-	Opto-isolator Ch. 15 - Input
30	IN-15+	Opto-isolator Ch. 15 + Input
31	IN-16-	Opto-isolator Ch. 16 - Input
32	IN-16+	Opto-isolator Ch. 16 + Input
33	GND	
34	GND	
35	DC + 5V	DC + 5V output
36	DC + 5V	DC + 5V output
37	DC + 12V	DC + 12V output
38	DC + 12V	DC + 12V output
39	GND	
40	GND	

Operations Manual

APPENDIX A

WARRANTY INFORMATION

A.1 Copyright

Copyright DECISION COMPUTER INTERNATIONAL CO., LTD. All rights reserved. No part of SmartLab software and manual may be produced, transmitted, transcribed, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of DECISION COMPUTER INTERNATIONAL CO., LTD.

Each piece of SmartLab package permits user to use SmartLab only on a single computer, a registered user may use he program on a different computer, but may not use the program on more than one computer at the same time.

Corporate licensing agreements allow duplication and distribution of specific number of copies within the licensed institution. Duplication of multiple copies is not allowed except through execution of a licensing agreement. Welcome call for details.

A.2 Warranty Information

SmartLab warrants that for a period of one year from the date of purchase (unless otherwise specified in the warranty card) that the goods supplied will perform according to the specifications defined in the user manual. Furthermore that the SmartLab product will be supplied free from defects in materials and workmanship and be fully functional under normal usage.

In the event of the failure of a SmartLab product within the specified warranty period, SmartLab will, at its option, replace or repair the item at no additional charge. This limited warranty does not cover damage resulting from incorrect use, electrical interference, accident, or modification of the product.

All goods returned for warranty repair must have the serial number intact. Goods without serial numbers attached will not be covered by the warranty.

The purchaser must pay transportation costs for goods returned. Repaired goods will be dispatched at the expense of SmartLab.

To ensure that your SmartLab product is covered by the warranty provisions, it is necessary that you return the Warranty card.

Under this Limited Warranty, SmartLab's obligations will be limited to repair or replacement only, of goods found to be defective a specified above during the warranty period. SmartLab is not liable to the purchaser for any damages or losses of any kind, through the use of, or inability to use, the SmartLab product.

be attended to.

warranty repair or replacement.

SmartLab reserves the right to determine what

Return Authorization: It is necessary that any returned goods are clearly marked with an RA number that has been issued by

SmartLab. Goods returned without this authorization will not

constitutes

APPENDIX B

DATA SHEET

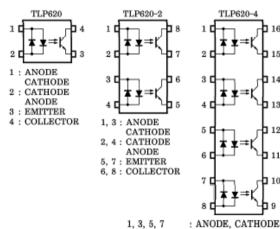
TLP620, TLP620-2, TLP620-4

PROGRAMMABLE CONTROLLERS

AC/DC-INPUT MODULE

TELECOMMUNICATION

The TOSHIBA TLP620, -2 and -4 consists of a photo-transistor optically coupled to two gallium arsenide infrared emitting diode connected in inverse parallel.


The TLP620-2 offers two isolated channels in an eight lead plastic DIP, while the TLP620-4 provides four isolated channels in a sixteen plastic DIP.

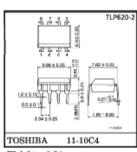
Collector-Emitter Voltage : 55V (Min.)

Current Transfer Ratio : 50% (Min.)

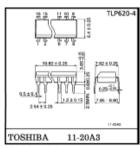
Rank GB : 100% (Min.)

PIN CONFIGURATIONS (TOP VIEW)

2, 4, 6, 8 : CATHODE, ANODE 9, 11, 13, 15 : EMITTER 10, 12, 14, 16 : COLLECTOR Unit in mm
TLP620


438+035 50

12+015 50


254-025 11-680

TOSHIBA 11-582

Weight: 0.26g

Weight: 0.54g

Weight: 1.1g

MADE IN JAPAN MADE IN THAILAND UL Recognized E67349 *1 E152349 *1 BSI Approved 7426, 7427 *2 7426, 7427 *2

*1 UL1577

*2 BS EN60065 : 1994, BS EN60950 : 1992

Isolation Voltage ; 5000V_{rms} (Min.)

Option (D4) type

VDE Approved : DIN VDE0884/06.92, Certificate No. 68384

Maximum Operating Insulation Voltage : 890VpK
Highest Permissible Over Voltage : 8000VpK

(Note) When a VDE0884 approved type is needed,
please designate the "Option (D4)".

Creepage Distance : 6.4mm (Min.)
Clearance : 6.4mm (Min.)
Insulation Thickness : 0.4mm (Min.)

MAXIMUM RATINGS (Ta = 25°C)

CILADA CITEDISTIC		GYMDOI	RAT		
	CHARACTERISTIC	SYMBOL	TLP620	TLP620-2 TLP620-4	UNIT
Г	Forward Current	IF (RMS)	60	50	mA
ı	Forward Current Derating	ΔI _F /°C	-0.7 (Ta≥39°C)	-0.5 (Ta≥25°C)	mA/°C
LED	Pulse Forward Current	I_{FP}	1 (100μs pu	lse, 100pps)	A
3	Power Dissipation (1 Circuit)	P_{D}	100	70	mW
ı	Power Dissipation Derating	ΔP _D /°C	-1.0	-0.7	mW/°C
ı	Junction Temperature	Tj	1	25	°C
г	Collector-Emitter Voltage	v_{CEO}		55	V
	Emitter-Collector Voltage	v_{ECO}	7		v
S S	Collector Current	I _C	50		mA
DETECT	Collector Power Dissipation (1 Circuit)	PC	150	100	mW
DEJ	Collector Power Dissipation Derating (1 Circuit) (Ta≥25°C)	∆P _C /°C	-1.5	-1.0	mW/°C
ı	Junction Temperature	Tj	1	25	°C
Sto	rage Temperature Range	Tstg	-55	~125	°C
Op	erating Temperature Range	Topr	-55·	~100	°C
Les	nd Soldering Temperature	Tsold	260	10s)	°C
Tot	al Package Power Dissipation	P_{T}	250	150	mW
Total Package Power Dissipation Derating (Ta≥ 25°C, 1 Circuit)		∆P _T /°C	-2.5	-1.5	mW/°C
Isol	lation Voltage	BVS	5000 (AC, 1 m	in., RH≦60%)	Vrms

RECOMMENDED OPERATING CONDITIONS

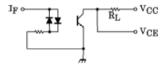
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{cc}	_	5	24	v
Forward Current	IF (RMS)	_	16	20	mA
Collector Current	IC	_	1	10	mA
Operating Temperature	T_{opr}	-25	_	85	°C

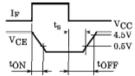
INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

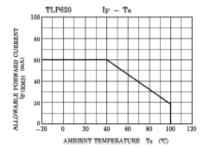
	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	v_F	$I_F = \pm 10 \text{mA}$	1.0	1.15	1.3	V
LED	Forward Current	IF	$V_F = \pm 0.7V$	_	2.5	20	μΑ
1"	Capacitance	c_{T}	V=0, $f=1MHz$	_	60	_	pF
	Collector-Emitter Breakdown Voltage	V (BR) CEO	$I_{\rm C}\!=\!0.5{ m mA}$	55	_	_	v
DETECTOR	Emitter-Collector Breakdown Voltage	V (BR) ECO	$I_{\rm E}$ = 0.1mA	7	_	_	v
	Collector Dark Current	Tono	$V_{CE}=24V$	_	10	100	nA
	Collector Dark Current ICEO	$V_{CE}=24V$, $Ta=85$ °C	_	2	50	μ A	
L	Capacitance (Collector to Emitter)	c_{CE}	$V_{ ext{CE}}$ =0, f=1MHz	-	10	_	pF

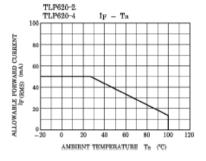
COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

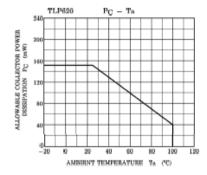
CHARACTERISTIC	SYMBOL	L TEST CONDITION		TYP.	MAX.	UNIT
Current Transfer Ratio	I_C/I_F	I _F =±5mA, V _{CE} =5V Rank GB	50 100	=	600 600	%
Saturated CTR	IC/IF(sat)	$I_F = \pm 1$ mA, $V_{CE} = 0.4$ V Rank GB	30	60	_	%
Collector-Emitter Saturation Voltage	V _{CE (sat)}	I_C =2.4mA, I_F =±8mA I_C =0.2mA, I_F =±1mA Rank GB		0.2	0.4 — 0.4	v
Off-State Collector Current	IC (off)	$V_F = \pm 0.7V, V_{CE} = 24V$	_	1	10	μ A
CTR Symmetry	IC (ratio)	$I_{C}(I_{F} = -5mA)/I_{C}(I_{F} = +5mA)$	0.33	1	3	_

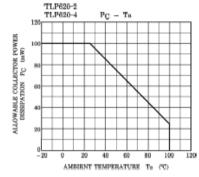

ISOLATION CHARACTERISTICS (Ta = 25°C)

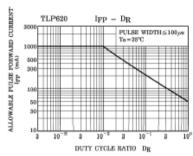

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance Input to Output	c_{S}	V _S =0, f=1MHz	_	0.8	_	pF
Isolation Resistance	RS	V _S =500V	1×10^{12}	1014	_	Ω
	1 -	AC, 1 minute	5000	_	_	37
Isolation Voltage		AC, 1 second, in oil	_	10000	_	V _{rms}
		DC, 1 minute, in oil	_	10000	_	v_{dc}

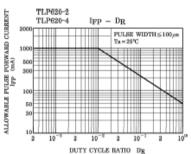

SWITCHING CHARACTERISTICS (Ta = 25°C)

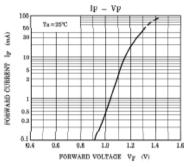

CHARACTERISTIC	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Rise Time	tr	TI 40TI		2	_	
Fall Time	tf	V _{CC} =10V I _C =2mA	_	3	_	
Turn-on Time	ton	$R_{I} = 100\Omega$	_	3	_	μ8
Turn-off Time	toff	KL=10021		3	_	
Turn-on Time	ton	R _L =1.9kΩ (Fig.1)	_	2	_	
Storage Time	t _s	V _{CC} =5V, I _F =±16mA	_	15	_	μs
Turn-off Time	tOFF	*(C-5*, 1) = 1 Tollik	_	25	_	

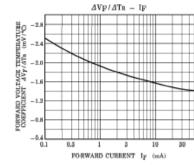

Fig.1 Switching Time Test Circuit

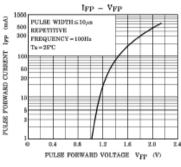


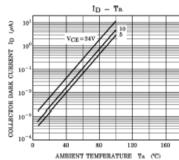


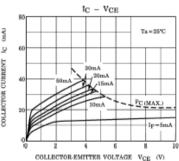


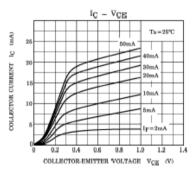


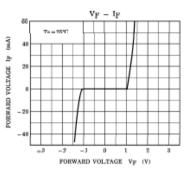


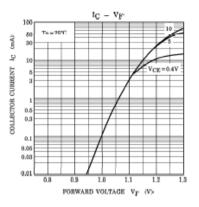


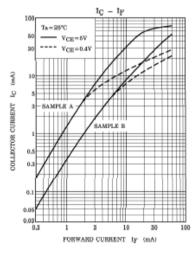


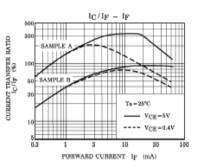

17

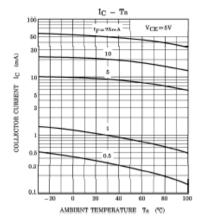


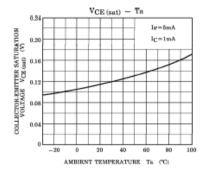


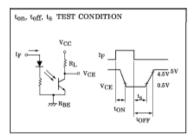


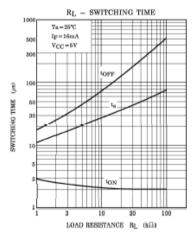












00207505

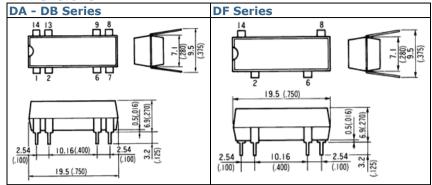
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs
 dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to
 dispose of them. When disposing of the products, follow the appropriate regulations. Do not
 dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

4 PIN DIP/DF Series

UL models available

- Industry standard package
- Transfer molded for environmental protection
- Miniature size
- Compatible with DIP handling, sorting and PCB insertion quipment

Coil Patings


Coll Ratings	
Part Number	DB1A**BW(D)
	DA1A**BW(D)
Nominal Voltage (VDC)	5
	12
	24
Coil Resistance (ohms) ±10%	500
con Resistance (onnis) 110 /o	850
	2200
Operate Voltage (VDC) may	3.8
Operate Voltage (VDC) max.	
	9.0
	18.0
Release Voltage (VDC) min.	0.5
	1.0
	2.0
Schematics	13 (MS) 9(E.S.S) 8 0 (AS) 9(E.S.S) 8 14 13 (M.S.) 9(E.S.S) 8 14 13 (M.S.) 9(E.S.S) 8

Contact Ratings

Operations Manual

Paramet	ers	DA1A**BW DA2A**BW DA1B**BW	DB2A**BW	DA1C**BW DB1C**BW	DA1A**NW DA1A**DW Mercury	DF1A**BW DF1B**BW	
Power (W) max.		10		3	50	10	
Voltage (VDC) max.		200		100	500	200	
Switching Current (A)		0.5		0.25	2.0	0.5	
Carry Current (A	A) max.	1.	0	0.5	2.0	1.0	
Contact Resistance (ohms) max. (initial)		0.15		0.15	0.1	0.15 (1A) 0.2 (1B)	
Breakdown Voltage (VDC)	Open Contact	250		200	1000	250	
min.	Contact to Coil	1500		1500	1500	1500	
Insulation Resistance	Open Contact	10 ¹⁰		10 ⁸	10 ¹⁰	10 ¹⁰	
(ohms) min.	Contact to Coil	10 ¹⁰		10 ¹⁰	10 ¹⁰	10 ¹⁰	
Operate Time (mS) max (incl. bounce)		1.0		2.0	1.0 (NW) 2.0 (DW)		
Release Time (mS) max.		0.5		1.0 (NW 2.5 2.0 (DW		0.5	
	Low Level	10 ⁸ (10mV	DC, 10μA)	5 X 10 ⁸ (10VDC, 4mA)	10 ⁹ (10VDC, 4mA)	10 ⁸ (10mVDC, 10μA)	
Electrical Life	Rated Load	6 X 10 ⁵ (20VDC, 0.5A)		2 X 10 ⁶ (12VDC, 0.25A)	10 ⁶ (50VDC,	6 X 10 ⁵ (20VDC, 0.5A)	

Dimensions

